

Implementation of PROGRASS and IFBB in Poland

Piotr Goliński, Barbara Golińska, Marek Czerwiński, Jędrzej Daszkiewicz

Department of Grassland and Natural Landscape Sciences, Poznan University of Life Sciences, Poland

EUROPEAN

DEVELOPMENT FUND

Contents

- Semi-natural grasslands in Poland resource assessment for biomass production capability
- Polish case study
 - Assessment of the Project feasibility experimental site
 - Site of planned IFBB implementation
- Conclusions

Meadows in Poland

- 2 565 000 ha
- about 66% are seminatural
- 11.6% of AUA

Share of meadows in agriculturally utilized area (AUA)

Semi-natural grassland habitats in Poland – conservation status and trends

Hahitat	Surface area	Trend	Protection	
Habitat	(ha)	IIChu	score	
6510 Arrhenatherion	685	\downarrow	U1	
6520 Polygono-Trisetion	140	\downarrow	U1	
6410 Molinion caerulae	XX	\downarrow	U1	
6440 Cnidion dubii	1.64	\downarrow	U1	
6210 Festuco-Brometea	3-4	\downarrow	U1/U2	

 \downarrow - fall; xx – lack of data Habitat status: U1 – poor protection, U2 – insufficient protection

Source: Report for EU Commission 2013

Reasons for the decline of semi-natural grassland area in Poland

Reason	Priority scale (1-highest, 5-lowest)
land/farm abandonment	1.32
low productivity	2.47
lack of agricultural policy	2.94
intensification of use	3.34
disadvantageous management	4.92
NIR _{0.05}	0.40

Source: Goliński i Golińska 2011

The reasons for the abandonment of seminatural grasslands utilization in Poland

- Drop in livestock numbers (sheep from 4 million to 220 thousand, cattle from 10 million to 5 million)
- Low quality of forage (low digestibility, poor feeding value, low efficiency of forage conversion into animal products)
- Concentration of cattle production in particular regions (increase of livestock number per farm), change of the cattle keeping from grazing into indoor

Polish agri-environmental programme – main tool for protection of high nature value grasslands

- Schemes created for protection of birds and habitats
- (including Natura 2000)
- Main requirement for beneficiaries regarding use of such areas late cutting and biomass removal
- Harvested biomass as a substrate for bioenergy production

PROGRASS and IFBB in Poland – circumstances of implementation

- The capability of biomass production on Polish grasslands in significant
- Maintainance of the grasslands use is an urgent task of nature conservation in Poland
- The IFBB technology is a chance for preserving semi-natural grasslands

Polish case study – selection of sites and plant communities

Vegetation of selected sites:

- *Phalaris arundinacea* dominated community
- Phragmitetum australis
- Tall-sedge community dominated by *Carex riparia*

Noteć River valley Barycz River valley Przemkowski Landscape Park

Analysis of the biomass harvested in the selected sites

Item	Unit	Barycz H	Barycz River valley		Noteć River valley	
	Um	Mean	Range	Mean	Range	
DM yield	t ha ⁻¹	5.7	3.5-9.0	5.4	4.0-7.0	
DM content	%	30.8	21-43	36.4	30-39	
Crude protein	g kg ⁻¹ DM	103.5	68-180	84.6	65-103	
Neutral detergent fiber	g kg ⁻¹ DM	509.8	459-583	563.1	510-592	
Acid detergent fiber	g kg ⁻¹ DM	316.1	279-351	367.0	302-397	
Crude ash	g kg ⁻¹ DM	63.6	52-75	64.5	50-84	

Harvest date: 1-10 August 2012; dry matter yield estimation and chemical analyses: commonly used methods

Źródło: Goliński i Goliński 2013

Experimental site – Noteć River valley characteristics of vegetation

- syntaxons typical for riparian areas in Poland
- Important Natura 2000 birds site
- *Molinio-Arrhenatheretea* community with a rich flora characteristic of *Agropyro-Rumicion crispi* and *Calthion* alliances, differentiated towards *Phalaridetum arundinaceae*
- If abandoned, the communities evaluate in direction of shrubby vegetation (e.g. *Salicetum pentandro-cinerea*) and than to the woody vegetation (e.g. *Alnion glutinosae*)

Plant diversity of vegetation on experimental site

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND

The nature of Lower Noteć Valley

Substrate production at the experimental site

Cutting:

- Equipment adjusted to wet areas
- Delayed cutting date

Substrate production at the experimental site Biomass treatment before ensiling:

- High dry matter content may cause for problems with fermentation
- Solution: application of microbial inoculants

EVELOPMENT FUNE

Substrate production at the experimental site

Harvesting:

- Biomass compaction into round bales
- Transport into a storage place

Substrate production at the experimental site

Biomass conservation:

- Wrapping bales with a film
- Quality assessment of ensiled biomass

IROPFA

EVELOPMENT FUND

Test combustion characteristics of biomass from Polish experimental site

Dominant species	Phalaris arundinacea, Carex acutiformis, Carex acuta	
Ash	g kg ⁻¹ DM	35.4
Dry matter (DM)	% of FM	93.3
Heating value	(MJ kg ⁻¹ DM)	17.94
(LHV)	(MJ kg ⁻¹ FM)	16.57
Ν	g kg ⁻¹ DM	7.0
Κ		1.1
Cl		0.8
S		0.9

Polish case study – Site of IFBB implementation

Planned investment

- Plant investor BioEn Ventures
- IFBB add-on installation connected with a 2MW biogas plant
- Substrate for biogas plant vegetable waste and chicken manure
- Grassland area covered with the agri-environment scheme "Birds protection"
- Substrate for IFBB add-on biomass collected from 1st August on
- 1000 ha of grasslands located up to 15 km from the plant
- 1 cut per year, app. 5 tones per ha

Pre-calculation of an IFBB plant in Poland Assumptions:

Parameter	Unit	Value
Biomass throughput	t DM / year	5000
Grassland production costs	€ / t DM	35
Electricity costs	€ ct./kWh _{el}	10.70
Heat costs	€ ct./kWh _{th}	3.00
Briquette price	€ / t	100.00
Rate of briquette price increase	% / year	5.7

Investment costs	€
Machinery, technical equipment	
Biomass macerator	90.000
Solids feeder (two feeders)	158.000
Conditioning of biomass	165.000
Screw press	170.000
Storage tank for biomass mash	17.171
Press fluid storage tank	19.747
Press cake drying	98.000
Press cake briquetting	250.000
Pumping devices	66.967
Elevation technique	41.210
Briquette storage	35.000
Other technical and constructional installations, Planning	
Factory building	165.996
Storage for grassland material (concrete silos)	338.175
Wheel loader	67.000
Costs for construction grounds	50.000
Costs for plant infrastructure	150.000
Costs for plant installation	150.000
Planning and permission	203.227
Total investment costs	2.235.493

Investment costs	€
Machinery, technical equipment:	1.111.095
Biomass macerator, solids feeder (two feeders),	
conditioning of biomass, screw press, storage tank	
for biomass mash, press fluid storage tank, press cake	
drying, press cake briquetting, pumping devices,	
elevation technique, briquette storage	
Other technical and constructional installations,	1.124.398
planning:	
Factory building, storage for grassland material	
(concrete silos), wheel loader, costs for construction	
grounds, costs for plant infrastructure, costs for plant	
installation, planning and permission	
Total investment costs	2.235.493

Capital-related costs (€ a ⁻¹)	343.139
Operation-related costs ($\in a^{-1}$)	70.606
Consumption-related costs (€ a ⁻¹)	553.997
Electrical process energy	206.655
Thermal process energy	148.268
Substrate input	199.054
Other costs (€ a ⁻¹)	14.989
Total costs (€ a ⁻¹)	982.711
Incoming payments (€ a ⁻¹)	1.051.525
Electricity (market sales)	_
Electricity (from green certificates)	348.210
Electricity (heat usage)	_
Grass pellets	703.315
Total annuity (€ a ⁻¹)	68.814
Internal Rate of Return (IRR; %)	11.05

Conclusions

- Riparian vegetation in Poland is dominated by plant communities which provide promising substrate for the bioenergy production
- Agri-environment law in Poland favors the application of IFBB technology
- Although legal and financial tools which support the green energy production in Poland are unstable, some companies are seriously considering the implementation of IFBB technology

Thank you for your attention!